Yonsei Advanced Science Institute

Logo and Menu

Research

Publications

Oscar Hsu-Cheng Cheng†, Boqin Zhao†, Zachary Brawley, Dong Hee Son*, and Matthew T. Sheldon* († equally contributed)
Active Tuning of Plasmon Damping via Light Induced Magnetism
Nano Lett., 22 (13), 5120-5126
Date: Jun 27, 2022

Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.

Copyright and Address

  • ADDRESS IBS Hall 50 Yonsei-ro, Seodaemun-gu, Seoul 03722
  • TEL +82-2-2123-4769   FAX +82-2-2123-4606
  • E-MAIL ibs@yonsei.ac.kr
  • Copyright © IBS Center for NanoMedicine,YONSEI UNIV.
    ALL RIGHTS RESERVED.

Display Page Loading Image

Top